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Agent-based modeling (ABM)

Bottom-up study of agent interaction in virtual landscapes
and artificial societies, based on rules of behavior.

Cognitive capabilities: “perceive signals, react, act, making
decisions, etc. according to a set of rules” (Conte 1995):

> beliefs: what agents think to know about the world
(experience, perception)

» goals: desired states agents want to achieve

> priorities: action selection to achieve desires.

» reactive and adaptive: observe & respond to environment
» rule-based: follow defined decision rules.

| - ABM should represent essential aspects of human behavior
¢ and social interaction

—>Agents have motivation and capability to act on their natural

' and social environment

—>Agents follow adaptive decision rules of selecting action and

¥ observe the outcome of actions and reactions
: = Agents learn to balance what they want, what they can
| and how they act
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Two-agent interaction

Sensitivity ~ Information { Communication Sensitivity

System vy
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Multi-agent adaptive cycles in the VIABLE model

Values and Investments in Agent-Based interaction and Learning for Environmental Systems

Decision and adaptation rules AK
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Stability of interaction matrix determines
tipping between conflict and cooperation
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-Equilibria, stability and complexity depend on mutual impacts f;(p) and
thus can be controlled by changing action priority p.

-Stability depends on eigenvalues of interaction (Jacobi) matrix F(p)

-Two agent stability for f; > 0, f; <O and det F =y, f,, —f;, f,; >0

- Instability leads to tipping point between confllct and cooperation
p.5



End of Cold War: Tipping from nuclear arms race to disarmament
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Post-Cold-War: Security bifurcation cascade in the VIABLE model

Bifurcation Diagram - SCX Model
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Post-Cold-War: Winners and loosers in multi-agent world
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Fishery management
IN human-environment interaction
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Overexploitation of marine resources
and fishery conflicts

70% of fish stocks worldwide heavily
overexploited

Some of them collapsed or to be
collapsed, e.g. Northwest
Atlantic or North Sea cod

Low quality of management strategies
High levels of subsidies

Collective-action problem in common
pool resource (Tragedy of the
commons)

Conflicts on scarce fish stocks

p. 10



Interaction and balance
of ecological and economic dynamics in fishery

r (K —Xx)

Fish productivity

Ecological system:

x = fish density
K = ecological carrying capacity of fish
r = fish growth rate

Economic system:
C = fishing effort
e = catch efficiency

Technology
Environment

Viability conditions:
--Ecological: How much investment C in harvesting h to not exceed fish productivity?

--Economic: How much investment C to avoid negative profit on fishery market?
p. 11



Compatibility of economic and ecological viability

Investment C
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Competitive fishery case
6 fishing companies, 2 fish species
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Scheffran, J. (2000) The Dynamic Interaction Between Economy and Ecology: Cooperation, Stability and Sustaina-
bility for a Dynamic-Game Model of Resource Conflicts. Mathematics & Computers in Simulation 53: 371-380. 0. 13



Cooperative sustainable fishery case
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Water management
IN human-environment interaction
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MILE RIVER BASIN

Agent-based social network model
of country interactions in Nile river basin

Scenarios of climate change Investments into the expansion of water resources ooyt
(20 year period):

“| 1. Baseline scenario without climate change
1 2. Reduced water availability by 20%

3. Increased water availability by 20%
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Bioenergy and food
IN human-environment interaction
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Agent networks in spatial modeling environment

‘ / / Agent model
// /G,I/S Data/f yerS/ // ingeearllchmcoelle )

Scheffran/Bendor/Wang/Hannon, A Spatial-Dynamic Model of Renewable Energy Crop Introduction in Illinois, September
2007. p. 18




Multi-crop multi-agent model for lllinois

Corn
Soybean
Farmerl " | Switchgrass
Pik Miscanthus
Capital, labor /' Vala Market
and investment| c Price
| orn
Pik
Soybean
Farmer?2 " | Switchgrass
Physical, economic Miscanthus Physical, economic
and political factors and political factors

Scheffran/Bendor/Wang/Hannon (2007) A Spatial-Dynamic Model of Renewable Energy Crop Introduction in Illinois.p. 19



Spatial agent model of bioenergy landscapes in North Germany

scenario_yield
pﬁa_m ai_food_change

B o 2 scenario_yield

- a4 prio_mai_fuel_change

| Rk | BT

| R | B

[ EY | EE

o | EX

o [Jo

[ 02 o2

[ [k I

| bE I o

ks B 05

i B o5 source: Jinxi Yang (2016) Agent-based Modeling of Pathways of Energy

L . Landscapes in Northern Germany, Master Thesis

cultivation area - price -
400000 cereals-food 1500 . coaaleood
Crop cultivation  Mmaizefood Crop prices s
- ' Wbest-food Wsugarbest-food
Cwinter rape-food =::-: E—Food
[l cereals-Fuel — alze-lfuel
izt B sugar best-fuel
=W b:.fm:; [ winter rape-fuel
winkter I

[Mtotal area-food %
Wtotal area-fuel 3

2010 year 2100




A Dynamic Sustainability Analysis of Energy

Landscapes in Egypt: A Spatial Agent-Based

Model Combined with Multi-Criteria Decision
Analysis

Policy-makers

Mostafa Shaaban', Jiirgen Scheffran'?, Jiirgen Bohner?, Mohamed
S. Elsobki®
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Energy and climate change
IN human-environment interaction
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Multi-level transitions in climate governance
at macro level
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Adaptive emission control under uncertainty

1 CO2 concentration

«

Limit

— - e e -
- wmm =
—
-

>

% t 2 Time

Adaptive decision rules: Ax(t) = w(x,t) D(x,t)
Speed control Ax(t) = w (xX*(t) — x(t)) 0. 24



Integrated energy-climate system modeling
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Comparison of technology paths
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Energy and climate change in transformation

at meso level
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Global emission reduction:
a multi-agent collective action problem

G(t): Global emissions at time t
G*(t): Global emission target at time t
G,(t): Baseline emissions path of actor |

r(t): Emission reduction of i from baseline

p. 28



Agent-based model of emissions trading in the
VIABLE framework
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Emission trading in Netlogo
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Baseline simulations for global emission target 5 Gt
for two cases of allocation
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Energy and climate change in transformation

at micro level
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Adaptive coalition formation between energy providers
and customers for high-and low-carbon energy paths

Scheffran (2006) The Formation of Adaptive Coalitions. In: Haurie et al (eds.) Advances in Dynamic Games



Coalition building dynamics
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Mobility, migration and adaptation
IN human-environment interaction

Mobility Human and
Migration :
Systems +—> ['" “— Social Systems

Adaption

p. 35




Agent-based modeling of GIS-based
human-environment interaction

Human behavior:
Mobility, attributes,
activities

~_~ Environment stress factors:
~_~_~ Cell-based data of

_ temperature and pollution

concentration

Spatial data:
Buildings, schools,
shops, streets,
green areas, efc.

Source: Yang/Hoffmann/Scheffran/Rihe/Fischereit/Gasser 2018, adapted and reedited from Leyk et al. p. 36



Assessment of Flood Losses with Household Responses: Agent-Based

Simulation in an Urban Catchment Area
Environmental Modeling & Assessment (2018) 23:369-388

Liang Emlyn Yang'? - Jiirgen Scheffran’ - Diana Siisser™*
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Technological and social networks of a pastoralist artificial .
society: agent-based modeling of mobility patterns - '
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Urban ABM for Hamburg

Different commuting routes between home and work
for selected area in Hamburg
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Urban ABM for Hamburg: Exposure to environmental stressors

Exposure in summer
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Integrative framework of rural-urban interaction
under climate change

Climate projections
Global climate change
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Case studies

Integrated GIS platform
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