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Bottom-up study of agent interaction in virtual landscapes 
and artificial societies, based on rules of behavior.

Cognitive capabilities: “perceive signals, react, act, making 
decisions, etc. according to a set of rules” (Conte 1995):

 beliefs: what agents think to know about the world 
(experience, perception)
 goals: desired states agents want to achieve
 priorities: action selection to achieve desires.
 reactive and adaptive: observe & respond to environment
 rule-based: follow defined decision rules.

ABM should represent essential aspects of human behavior 
and social interaction
Agents have motivation and capability to act on their natural 
and social environment
Agents follow adaptive decision rules of selecting action and 
observe the outcome of actions and reactions
 Agents learn to balance what they want, what they can 
and how they act

Agent‐based modeling (ABM)
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Multi-agent adaptive cycles in the VIABLE model
Values and Investments in Agent-Based interaction and Learning for Environmental Systems

: (marginal) value driver of action k for agent i          

ΔVi = Σ fij ΔCj = ΔVi
* Value goal Mutual

impact
Adaptive decision rule for priority
pik of agent i for action k
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Stability of interaction matrix determines
tipping between conflict and cooperation

C1 Ci Cn

V1 - V1
*

-Equilibria, stability and complexity depend on mutual impacts fij(p) and
thus can be controlled by changing action priority p.
-Stability depends on eigenvalues of interaction (Jacobi) matrix F(p)
-Two agent stability for fii > 0, fij <0 and det F = f11 f22 – f12 f21 > 0
 Instability leads to tipping point between conflict and cooperation

V2 - V2
*

Vn - Vn
*

V= F C = V*Capability

Value



p. 6

End of Cold War: Tipping from nuclear arms race to disarmament
Worst-case parameter w

Nuclear arsenals
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Post-Cold-War: Security bifurcation cascade in the VIABLE model

Source: Jathe/Scheffran (1993) Complexity and Stability of International Security: A Dynamic Approach
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Jürgen Scheffran (2008), Complexity
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Scheffran (2015), in: Kavalski

Post-Cold-War: Winners and loosers in multi-agent world
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Overexploitation of marine resources 
and fishery conflicts

70% of fish stocks worldwide heavily 
overexploited 

Some of them collapsed or to be 
collapsed, e.g. Northwest
Atlantic or North Sea cod

Low quality of management strategies

High levels of subsidies

Collective-action problem in common 
pool resource (Tragedy of the 
commons)

Conflicts on scarce fish stocks



p. 11

Interaction and balance 
of ecological and economic dynamics in fishery
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Economic system: 
C = fishing effort
e = catch efficiency

Ecological system: 
x = fish density

K = ecological carrying capacity of fish
r = fish growth rate

Viability conditions:
--Ecological: How much investment C in harvesting h to not exceed fish productivity?
--Economic: How much investment C to avoid negative profit on fishery market?
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Compatibility of economic and ecological viability
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Source: Bendor/Scheffran 2009
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Competitive fishery case
6 fishing companies, 2 fish species

Scheffran, J. (2000) The Dynamic Interaction Between Economy and Ecology: Cooperation, Stability and Sustaina-
bility for a Dynamic-Game Model of Resource Conflicts. Mathematics & Computers in Simulation 53: 371–380.
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Cooperative sustainable fishery case

Scheffran, J. (2000) The Dynamic Interaction Between Economy and Ecology: Cooperation, Stability and Sustaina-
bility for a Dynamic-Game Model of Resource Conflicts. Mathematics & Computers in Simulation 53: 371–380.
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Agent-based social network model 
of country interactions in Nile river basin

Scenarios of climate change 
(20 year period):
1. Baseline scenario without climate change 
2. Reduced water availability by 20%
3. Increased water availability by 20%

Source: Scheffran, Link, and Schilling (2012)

Symbol line: baseline; dashed: reduced water; solid: 
increased water from climate change

Investments into the expansion of water resources

Development of water supply
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Agent networks in spatial modeling environment
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Scheffran/Bendor/Wang/Hannon, A Spatial-Dynamic Model of Renewable Energy Crop Introduction in Illinois, September 
2007.

Spatial Boundary Map
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Multi-crop multi-agent model for Illinois
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Scheffran/Bendor/Wang/Hannon (2007) A Spatial-Dynamic Model of Renewable Energy Crop Introduction in Illinois.



Spatial agent model of bioenergy landscapes in North Germany

Crop cultivation Crop prices

Source: Jinxi Yang (2016) Agent-based Modeling of Pathways of Energy 
Landscapes in Northern Germany, Master Thesis



Policy-makers
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Multi-level transitions in climate governance
at macro level

Source: Scheffran 2016

Top down

Bottom up
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Adaptive emission control under uncertainty
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Comparison of technology paths
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Energy and climate change in transformation
at meso level

Source: Scheffran 2016
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Global emission reduction: 
a multi-agent collective action problem

G(t): Global emissions at time t

G*(t): Global emission target at time t

Gi(t): Baseline emissions path of actor i

ri(t): Emission reduction of i from baseline
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Agent-based model of emissions trading in the 
VIABLE framework
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Emission trading in Netlogo
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Baseline simulations for global emission target 5 Gt 
for two cases of allocation
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Energy and climate change in transformation
at micro level

Source: Scheffran 2016



Adaptive coalition formation between energy providers 
and customers for high-and low-carbon energy paths

Scheffran (2006) The Formation of Adaptive Coalitions. In: Haurie et al (eds.) Advances in Dynamic Games
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Coalition building dynamics

Scheffran (2006) The Formation of Adaptive Coalitions. In: Haurie et al (eds.) Advances in Dynamic Games
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p. 36Source: Yang/Hoffmann/Scheffran/Rühe/Fischereit/Gasser 2018, adapted and reedited from Leyk et al. 

Agent-based modeling of GIS-based 
human-environment interaction
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Source: Yang (2014)

Flood loss of households for different rainfall scenarios and same 
warning information (lead time 12 h, interval 3 h); black boxes indicate 
response costs
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Journal of Computational Social Science (2021)
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Urban ABM for Hamburg 

Source: https://www.cen.uni-hamburg.de/en/about-cen/news/1-news-2018/2018-06-18-abendblatt-scheffran.html

Different commuting routes between home and work 
for selected area in Hamburg
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Source: Yang/Hoffmann/Scheffran/Rühe/Fischereit/Gasser 2018

Urban ABM for Hamburg: Exposure to environmental stressors
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Integrative framework of rural-urban interaction
under climate change


